Application of Octacalcium Phosphate Collagen Composite to Bone Defects in Humans: A Long-Term Observational Study

Tadashi Kawai1*, Tetsu Takahashi2, Keiko Matsui1, Yushi Ezoe3, Osamu Suzuki2 and Shinji Kamakura1

1Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Japan
2Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Japan
3Division of Bone Regenerative Engineering, Tohoku University Graduate School of Biomedical Engineering, Japan

Abstract

Clinical research on octacalcium phosphate collagen (OCP/Col) application in bone defect has demonstrated its high bone regeneration ability. Herein, we conducted a long-term study involving the clinical evaluation of OCP/Col-applied cases. A successful outcome was confirmed in two patients followed up for 7 years and 6.5 years. Both cases showed stable radiographic findings of the bone tissue without any abnormal findings of the oral cavity. To our knowledge, this is the first report to confirm the long-term stability and safety of newly formed bone after OCP/Col implantation.

Keywords: Bone regeneration; Bone substitute material; Long-term observation

Introduction

Certain calcium phosphate cement materials have been used as bone substitute materials for bone augmentation [1-3]. However, the use of these materials was found to lead to conditions, such as infection [4,5] or lower osteo conductivity, compared with the use of the autologous bone [6]. Therefore, a study of the long-term stability of substitute materials is imperative for reconstructive surgery. Octacalcium Phosphate (OCP) has been recognized as a bone substitute material with high osteo conductivity both in vitro and in vivo [7,8] and has been recommended as a precursor of biological apatite in bones and teeth [9]. In addition, direct evidence of the presence of OCP in the central part of human dentine crystals has been demonstrated, and apatite has been detected in the outermost layers of the same crystals [10] as well as in the porcine enamel [11] and sutures of the mouse calvaria during intramembranous osteogenesis [12]. The osteogenic potential of OCP was confirmed for the first time in 1991 by implantation under the periosteum of the mouse calvarium [7]. Subsequently, several studies were conducted on the bone regeneration ability of OCP, and repair of bone defect using OCP was confirmed in rats [13] and rabbits [14]. Moreover, the bone regeneration ability of OCP has been confirmed to be superior to that of hydroxyapatite and beta-tricalcium phosphate both in vitro and in vivo [15-17]. Since OCP is a granular material of inferior operability, a combination of OCP and atelocollagen (OCP/Col) was used for improving its operability [18]. Compared with OCP alone, OCP/Col yielded improved operability as well as bone regeneration ability [18]. On the basis of translational research for clinical application, some experiments have been performed on the bone regeneration ability of OCP/Col in various dog models of bone defects, such as tooth extraction hole [19], critical-sized calvarial bone defect [20], artificial alveolar cleft [21], and mandibular bone defect [22]. Successful bone repair was confirmed using OCP/Col in each experiment.

OCP/Col was first clinically applied in 10 cases between April 2011 and September 2013 as part of clinical research approved by the Research Ethics Committee of the Graduate School of Dentistry, Tohoku University. OCP/Col was used in five cases of tooth extraction socket and five cases of cystectomy cavity, and the effective bone healing of these bone defects was observed without infection or allergic reaction. The results of the first application of OCP/Col and the efficacy of OCP/Col have been previously reported [23-25]. Another group has also reported the clinical use of OCP granules for the defect after resection of fibrous dysplasia at the mandible and generation of space by...
Images of OCP/Col discs implantation in case 1. (a) After the extraction of the nasopalatine duct cyst, OCP/Col discs were implanted. Arrows indicate OCP/Col discs implanted in a bone defect.

Materials and Methods

Preparation of OCP/Col

OCP was prepared by mixing calcium and phosphate solutions as previously described [7]. Sieved OCP granules (particle size range: 300–500 µm) obtained from dried OCP were sterilized by heating at 120°C for 2 hr. Our previous study showed that such heating does not affect the physical properties of OCP granules, such as crystalline structure or specific surface area [27] although it has been reported that increasing the temperature to >100°C can induce the collapse of OCP structure because of dehydration [28,29]. Collagen was prepared from NMP collagen PS (Nippon Meat Packers, Tsukuba, Ibaraki, Japan), a lyophilized powder of pepsin-digested atelocollagen isolated from porcine dermis. NMP collagen PS was dissolved in distilled water and adjusted to a final concentration of 3% with a pH of 7.4. OCP was prepared by mixing calcium and phosphate solutions as previously described [7]. Sieved OCP granules (particle size range: 300–500 µm) obtained from dried OCP were sterilized by heating at 120°C for 2 hr. Our previous study showed that such heating does not affect the physical properties of OCP granules, such as crystalline structure or specific surface area [27] although it has been reported that increasing the temperature to >100°C can induce the collapse of OCP structure because of dehydration [28,29]. Collagen was prepared from NMP collagen PS (Nippon Meat Packers, Tsukuba, Ibaraki, Japan), a lyophilized powder of pepsin-digested atelocollagen isolated from porcine dermis. NMP collagen PS was dissolved in distilled water and adjusted to a final concentration of 3% with a pH of 7.4. OCP/Col was prepared from NMP collagen PS and OCP granules. OCP was added to concentrated collagen and mixed well. The weight percentage of OCP in OCP/Col was 77%. This OCP/Col mixture was then lyophilized and the discs were moulded (9-mm diameter, 1-mm thickness). The moulded OCP/Col was subjected to dehydro thermal treatment (150°C, 24 hr) in the Vacuum Drying Oven DP32 (Yamato Scientific, Tokyo, Japan) was inserted into the new bone region at the left upper lateral incisor region. The final prosthesis was set and the occlusion was reconstructed at 2 years after OCP/Col implantation. The patient is presently under observational follow-up at ongoing visit to our hospital for his dental implant. Case 2 was a 37-year-old man diagnosed with a radicular cyst of approximately 8-mm diameter at the left upper lateral incisor region based on X-ray examination (Figure 1b). OCP/Col was implanted into the defect after cystectomy and apicectomy under local anaesthesia. Histological examination revealed a radicular cyst. After the study, this patient visited the hospital for dental check-up because of injury to the maxillary region, where OCP/Col was implanted.

Cases

The study trial protocol was approved by the Ethics Committee of Tohoku University Graduate School of Dentistry (reference numbers 20-27 and 24-31). In this study, case 1 was a 45-year-old man who was tentatively diagnosed with a nasopalatine duct cyst of approximately 10-mm diameter using X-ray examination (Figure 1a). Additionally, the failure of tooth extraction cavity healing because of the presence of a punctiform foreign matter in the upper left incisor region was confirmed (Figure 3a, 4a). OCP/Col was implanted into each defect after cystectomy at the nasopalatine duct region and curettage of tooth extraction cavity at the left upper lateral incisor region. Computed Tomography (CT) was performed before cystectomy and at 3 or 6 months after OCP/Col implantation. Next, radiographic examination was performed whenever deemed necessary. Computed Tomography (CT) was performed before cystectomy and at 3 or 6 months after OCP/Col implantation. The Regions of Interest (ROIs) were defined

sinus floor elevation [26]. However, these reports have demonstrated the short-term progress after treatments using OCP, and no long-term progress has been reported thus far. In the present study, we investigated the long-term progress of two cases treated using OCP/Col for bone defects.
Discussion

We have previously applied OCP/Col in humans for the first time [23]. Subsequently, another study group has reported the clinical application of OCP granules [26]. Both these studies have confirmed bone regeneration using OCP materials. In previous *in vivo* studies, the use of OCP resulted in improved bone regeneration through complex formation with collagen [18]; therefore, OCP/Col was selected as a bone substitute material in this study. OCP/Col was implanted in the bone defects of 10 patients and no abnormal findings were observed until 1 year after implantation [25]. According to the protocols followed in this clinical research, the follow-up was performed only up to 1 year, and observation after this period was performed in only one case of dental implantation. Owing to the regular follow-up of the dental implant status, continuous confirmation of the OCP/Col implantation region was possible for case 1. During the 7-year follow-up period, no infection at the treated region or formation of neoplastic lesions was observed and no adverse effects on the surrounding teeth, such as mobility or loss, were confirmed; thus, it can be considered that OCP/Col was safely absorbed and replaced in the body. Furthermore, the dental implant inserted into the OCP/Col implantation region were stable, and the newly formed bone using OCP/Col demonstrated an affinity to the dental implant. A recent study has demonstrated similar stability with the simultaneous implantation of OCP/Col and dental implant body *in vivo* [30]. In case 2, long-term progress could be confirmed by examination because the patient visited the hospital due to an injury at the site treated in this clinical research. This patient was not continuously followed up thereafter. However, no abnormal findings were observed in X-ray and intraoral examination at 6 years and 6 months after OCP/Col implantation, and stable results were confirmed in the region treated using OCP/Col. Moreover, the newly formed bone using OCP/Col did not mutate and remained stable for a long time in this patient.

Reportedly, other materials, such as hydroxyapatite, are not completely absorbed in the body and cause infection [4,5]. Several studies have been performed or improving absorption and osteo conductivity by combining with other materials [31,32], incorporating other factors [33,34] or using mesenchymal stem cells [35,36]. However, OCP can irreversibly convert to bone-like apatite *in vitro* [8], and OCP/Col can form a new bone without remaining the phase of OCP because complete conversion from OCP to bone-like apatite has been confirmed directly using a micro-beam X-ray diffraction analysis in situ for the corresponding area of the implanted OCP in both bone and subcutaneous tissues [7,27]. In this study, the boundary between newly formed bone and the surrounding bone remained unclear until the last X-ray examination. Because OCP/Col does not remain as a foreign matter, the newly formed bone using OCP/Col may be stable.

Bone regeneration using OCP/Col or OCP granules has been reported in the clinical setting, but the long-term progress remains unknown. Even though we analyzed only two cases in this study, we could confirm, for the first time, the long-term treatment course using OCP/Col and indicate its safety and stability. Recently, a clinical trial of OCP/Col has been performed as a prospective, multi-centre, single-arm study. In this clinical trial, OCP/Col has been used in patients undergoing dental implantation and in those with cleft palate. In this study, however, the data have been collected over a short period until the confirmation of bone regeneration although these cases generally require long-term management. Therefore, in...
the future, long-term courses of several cases need to be observed for validating the stability of OCP/Col.

Conclusion

This present study confirmed for the first time the long-term stability and safety of newly formed bone using octacalcium phosphate collagen composite in two cases.

References

33. Lee JH, Ryu MY, Baek HR, Lee HK, Seo JH, Lee KM, et al. The effects of recombinant human bone morphogenetic protein-2-loaded tricalcium phosphate microsphere-hydrogel composite on the osseointegration of...
