Pedicled Nasal Flap for Naso-Oropharyngeal Reconstruction

Tae-Bin Won1,2,*, Joon Kon Kim1,2#, Woo-Jin Jeong1 and Sung-Woo Cho1

1Department of Otorhinolaryngology, Head and Neck Surgery, Seoul National University Bundang Hospital, Korea
2Department of Otorhinolaryngology, Head and Neck Surgery, Seoul National University Hospital, Korea
3Department of Otorhinolaryngology, Head and Neck Surgery, Daejeon Eulji Medical Center, Eulji University School of Medicine, Korea

Both authors contributed equally to the contents of this article

Abstract

Purpose: This study aimed to analyze the usefulness of employing pedicled nasal surgical flaps for the reconstructive surgical procedures of various naso-oropharyngeal lesions and investigate factors related to success.

Methods: A retrospective case review was conducted on patients with oropharyngeal lesions in which reconstruction was performed with pedicled nasal surgical flaps, with a follow-up of at least 1 year. Clinical features such as demographics, etiology, previous surgical history, underlying disease, surgical method, outcome, and complications were analyzed.

Results: A total of 12 patients were included. The mean age of the patients was 51.0 years. The reasons for reconstruction included palatal fistula (n=6), oroantral fistula (n=3), and naso-oropharyngeal stenosis (n=3). A multilayered reconstruction was used for oropharyngeal repair. The most commonly used nasal surgical flap was the nasoseptal flap (n=5, 41.6%), followed by the inferior turbinate flap (n=3, 25%), lateral nasal wall flap (n=2, 16.6%), middle turbinate flap (n=1, 8.3%), and nasal floor flap (n=1, 8.3%). Reconstruction was successful in all but one patient with oroanvil fistula, and a patent airway was maintained in all cases of naso-oropharyngeal stenosis, with an overall success rate of 91.6%. There was no additional nasal morbidity.

Conclusion: Pedicled nasal surgical flaps can be used to successfully reconstruct selective naso-oropharyngeal lesions.

Keywords: Surgical flaps; Reconstructive surgical procedures; Stenosis; Oroantral fistula

Introduction

Reconstruction of naso-oropharyngeal lesions, such as oroantral fistula and naso-oropharyngeal stenosis, is challenging. Oronasal and oroantral fistulas are pathologic epithelialized communication between the oral and sinonasal cavities. Repair alternatives include a variety of local, regional, and free flaps. Local flaps such as buccal and palatal mucosa flaps are the mainstay. The success rate ranges from 50% to 70% [1,2] as reported in small case series. Naso-oropharyngeal stenosis is an uncommon but serious complication commonly occurring after oropharyngeal surgery. Surgical failure and restenosis are common even after multiple procedures and are therefore regarded as a surgical challenge.

Pedicled nasal surgical flaps utilizing feeders from different parts of the nasal cavity have recently been emphasized as an invaluable source of reconstruction material for the anterior skull base [3] which comprises the superior and posterior part of the nasal cavity. A few case reports have utilized nasal flaps for reconstruction of the floor and lateral part of the nose to repair oroantral fistulas [4]. We analyzed the usefulness of employing pedicled nasal surgical flaps for the reconstruction of oronasal lesions and investigated factors related to their success.

Methods

We retrospectively reviewed the records of patients who underwent reconstruction of naso-oropharyngeal lesions with pedicled nasal surgical flaps from 2008 to 2018 at two tertiary care centers. The Institutional Review Board (IRB) of our hospital approved the present study (IRB...
No. I-2020-1382). The study was performed in accordance with the mandate of the WMA Helsinki declaration on ethical principles for medical research involving human subjects. The patients were followed up for at least 1 year. Clinical features such as demographics, etiology, previous surgery, underlying disease, surgical technique, and outcome were analyzed.

Results

The study included seven men and five women with ages ranging from 5 to 72 years (mean age, 51.0 years). The reasons for reconstruction included palatal fistula (n=6), oroantral fistula (n=3), and naso-oropharyngeal stenosis (n=3). A multilayered reconstruction, which included oral side repair, interposition graft, and nasal side repair, was used for oroantral and palatal fistulas (Table 1). Local rotational flap was the most commonly used oral side repair technique. The interposition graft varied from the septal bone (n=3), inferior turbinate bone (n=1), ear cartilage (n=1), temporalis muscle fascia (n=1), and fat (n=1). The most commonly used nasal flap was the nasoseptal flap (n=5, 41.6%), followed by the inferior turbinate flap (n=3, 25%), lateral nasal wall flap (n=2, 16.6%), middle turbinate flap (n=1, 8.3%), and nasal floor flap (n=1, 8.3%). Reconstruction was successful in all but one patient for the management of oroantral fistula (8/9, 88.8%), and was successful for all cases of naso-oropharyngeal stenosis, yielding an overall success rate of 91.6% (Table 1). The nasal donor site was mucosalized within several weeks without additional nasal morbidity such as septal perforation.

Case Series

Case 1: Palatal fistula

A 16-year-old male patient presented with a large palatal fistula measuring 3 cm × 2 cm in diameter. He had previously received chemoradiotherapy for the treatment of extranodal natural killer T-cell lymphoma, located in the nasal cavity. He also had a large sepal perforation and consequently a saddle nose deformity (Figure 1). A multilayered reconstruction was performed. The whole palatal mucosa was raised after a circumferential incision along the inner border of the teeth and cautiously raised without injury to the greater palatine arteries. The palatal mucosa was rotated and sutured in the midline after trimming the margins of the defect (Figure 2). A piece of autologous temporalis muscle fascia was inserted as an interposition graft. Finally, an anterior pedicled left side inferior turbinate flap was used to cover the nasal side. The anterior end of the inferior turbinate was cut, and the intervening turbinate bone carefully dissected. The turbinate mucosa was unfolded and sutured to the nasal floor (Figure 3). The pedicle was divided 1 year after the surgery along with the interposition graft and nasal side. The anterior end of the inferior turbinate bone was cut and suturing the turbinate bone carefully dissected. The nasal side was covered with a rhinoplasty with autologous rib cartilage. The 2-year postoperative findings demonstrated excellent healing of the palatal fistula together with an improved nasal appearance (Figure 4, 5).

<table>
<thead>
<tr>
<th>Case</th>
<th>Disease</th>
<th>Age/ Sex</th>
<th>Etiology</th>
<th>Previous surgery</th>
<th>Site</th>
<th>Defect Size (cm × cm)</th>
<th>Type of flap</th>
<th>Interposition graft</th>
<th>Underlying disease</th>
<th>RTx</th>
<th>Revision</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oroantral Fistula</td>
<td>67/F</td>
<td>Malignancy</td>
<td>Wide resection</td>
<td>Hard palate</td>
<td>1.3 × 0.8</td>
<td>Lateral nasal flap</td>
<td>Septal bone</td>
<td>DM</td>
<td>Yes</td>
<td>No</td>
<td>Success</td>
</tr>
<tr>
<td>2</td>
<td>Oroantral Fistula</td>
<td>58/M</td>
<td>Malignancy</td>
<td>Buccal</td>
<td>0.5 × 0.7</td>
<td>Nasal floor flap</td>
<td>Ear cartilage</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oronasal Fistula</td>
<td>36/M</td>
<td>Trauma</td>
<td>Oronasal fistula reconstruction operation 2 times</td>
<td>Hard palate</td>
<td>3.0 × 4.0</td>
<td>Inferior turbinate flap</td>
<td>Septal bone</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Oronasal Fistula</td>
<td>16/M</td>
<td>Malignancy</td>
<td>Hard palate</td>
<td>3.0 × 2.0</td>
<td>Inferior turbinate flap</td>
<td>Temporalis m. fascia</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Oroantral Fistula</td>
<td>56/M</td>
<td>Malignancy</td>
<td>Maxillectomy</td>
<td>Buccal</td>
<td>0.2 × 0.2</td>
<td>Middle turbinate flap</td>
<td>Septal bone</td>
<td>Yes</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oronasal Fistula</td>
<td>59/F</td>
<td>Benign tumor</td>
<td>Wide resection</td>
<td>Hard palate</td>
<td>1.5 × 1.0</td>
<td>Nasoseptal flap</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oronasal Fistula</td>
<td>63/M</td>
<td>Malignancy</td>
<td>Maxillectomy</td>
<td>Alveolus</td>
<td>2.0 × 2.0</td>
<td>Inferior turbinate flap</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oronasal Fistula</td>
<td>54/M</td>
<td>Malignancy</td>
<td>Wide resection</td>
<td>Hard palate</td>
<td>1.0 × 1.0</td>
<td>Nasoseptal flap</td>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oronasal Fistula</td>
<td>72/F</td>
<td>Malignancy</td>
<td>Partial palatostomy</td>
<td>Hard palate</td>
<td>2.0 × 4.0</td>
<td>Nasoseptal flap</td>
<td>DM, HTN</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oropharyngeal Stenosis</td>
<td>67/M</td>
<td>Congenital</td>
<td>Pharyngoplasty 4 times</td>
<td>Nasopharynx</td>
<td>NA</td>
<td>Nasoseptal flap</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oropharyngeal Stenosis</td>
<td>5/M</td>
<td>Latrogenic</td>
<td>Tonsillectomy and adenoidectomy, Pharyngoplasty</td>
<td>Oropharynx</td>
<td>NA</td>
<td>Nasoseptal flap</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Oropharyngeal Stenosis</td>
<td>53/F</td>
<td>Latrogenic</td>
<td>Pharyngoplasty 17 times</td>
<td>Naso-oropharynx</td>
<td>NA</td>
<td>1st op: Nasoseptal flap, 2nd op: Lateral nasal wall flap</td>
<td>NA</td>
<td>No</td>
<td>Yes</td>
<td>Success</td>
<td></td>
</tr>
</tbody>
</table>
A 53-year-old male patient presented with nasal stuffiness and dyspnea on exertion. On physical examination, the cause was determined to be naso-oropharyngeal stenosis (Figure 6). He had a history of oropharyngeal surgery to treat his snoring, which resulted in stenosis. Before presentation, he had undergone 17 surgeries without

Case 2: nasopharyngeal stenosis

A 53-year-old male patient presented with nasal stuffiness and dyspnea on exertion. On physical examination, the cause was determined to be naso-oropharyngeal stenosis (Figure 6). He had a history of oropharyngeal surgery to treat his snoring, which resulted in stenosis. Before presentation, he had undergone 17 surgeries without
success. The naso-oropharyngeal tissue was replaced with hard scar tissue, which was excised to obtain a patent airway. A left side nasoseptal flap was raised and rotated into the nasopharynx to cover the excised scar and sutured to the oropharyngeal mucosa (Figure 7). However, 3 months postoperatively, the reconstruction site was reclosed (Figure 8). Another surgery was performed this time utilizing the right lateral nasal wall flap incorporating the inferior turbinate (Figure 9). The wound healed well with a patent naso-oropharyngeal airway (Figure 10) with improved nasal obstruction.

Discussion

Reconstruction of oropharyngeal lesions such as palatal and oroantral fistulas and naso-oropharyngeal stenosis is challenging. Common techniques include various local and regional flaps to repair the oral side defect, such as palatal, buccal, and temporalis fascia flaps [5,6]. Previously reported success rate varied from 60% to 70% for oroantral and palatal fistula [1,2] and 50% to 60% for naso-oropharyngeal stenosis [7]. Success usually depends on size, location, etiology, and patient factors such as smoking, diabetes mellitus, and
previous radiotherapy [8].

After closure of the oral side defect, the nasal side is usually left to heal by secondary intention. Secondary healing of the nasal side defect follows a protracted course that usually requires 6 to 12 weeks for complete remucosalization [9]. This may cause prolonged crusting increasing the chance of secondary infection and ultimately failure. Simultaneous reconstruction of the nasal side, as part of a multilayered strategy, has been recently reported with faster recovery and good outcomes [10]. However, these were usually case reports or case series that included only a small number of patients [11]. To the best of our knowledge, our study provides the largest patient series in this regard. An array of nasal tissue can be used for this purpose from free grafts to pedicled nasal flaps. Numerous studies have shown the superiority of vascularized nasal flaps compared to free grafts for various reconstructive purposes [12-14]. Our study used vascularized pedicled mucosal flaps from various parts of the nasal cavity including the nasal septum, inferior turbinate, and lateral nasal wall which offered rapid re-mucosalization of the nasal side defect in 1 to 2 postoperative weeks.

The nasoseptal flap, with its pedicle based on the posterior nasal artery, a terminal branch of the sphenopalatine artery, is readily accessible, easy to harvest, and pliable and has minimal donor site morbidity [15,16]. In addition, it has a large surface area and good length and reach. This flap can reach from the nasopharynx to the anterior skull base and cover a ≥ 6 cm defect. Owing to these advantages, the nasoseptal flap is currently being used as a workhorse to repair various skull base defects and cerebrospinal fluid leaks. In cases where the septal flap is not available, there are alternative nasal flaps, such as the inferior and middle turbinate flaps and the lateral nasal wall flap. The inferior turbinate flap has a dual blood supply [17] and therefore can be pedicled anteriorly or posteriorly depending on the location of the defect. The main supply enters the

Figure 8: Postoperative endoscopic finding after 1 week showing poor circulation of in the edge of nasoseptal flap (A) which ultimately resulted in restenosis after 3 months (B).

Figure 9: Revision reconstruction using the pedicled right lateral nasal wall flap. A: Right lateral wall flap is elevated. The arrow exhibits right lateral wall. B: The flap is transposed to cover the naso-oropharynx. C: The flap is sutured to the oropharyngeal mucosa.

Figure 10: Endoscopic findings 6 months after volume reduction of the posterior end of the inferior turbinate show a well patent naso-oropharynx. A, B: view from the nasal side and C: view from the oral side.
turbinate from above, 1 cm to 1.5 cm from its posterior border, and is the descending branch of the sphenopalatine artery. The artery then passes forward, providing a rich anastomotic network of vessels; as the vessel courses anteriorly, it increases in diameter, which suggests a significant anterior-based component to its blood supply. The anterior blood supply originates from the angular artery and allows for the anteriorly pedicled inferior turbinate flap which can be used when the sphenopalatine artery is sacrificed [18]. It is simple and quick to harvest and is readily available during endonasal surgery in the absence of a nasoseptal flap. Lateral nasal wall flaps have a rich vascular supply based on the branch of the posterolateral nasal artery that, in turn, is a branch of the sphenopalatine artery. Branches of the facial and ethmoidal arteries supply the anterior lateral nasal wall [19]. A lateral nasal wall flap can be used for large oropharyngeal defects because the flap has a wide acquisition range.

The nasoseptal flap was usually the flap of choice followed by other nasal flaps when the septum was not available or for salvage. Therefore, the nasoseptal flap was used most commonly in our series (n=5), followed by the inferior turbinate flap (n=3), lateral nasal wall flap (n=2) and middle turbinate flap (n=1).

Our case series demonstrated excellent results for the reconstruction of various oropharyngeal lesions. The overall success rate of 91.6% (for 89% fistulas and 100% for stenosis) was noticeably better than that previously reported. The oral side repair was not different from the others, which used local rotational flaps such as palatal and buccal flaps. Therefore, we believe that the high success rate is in part related to the additional nasal side repair with pedicled nasal surgical flaps. One oroantral fistula repair failed. This patient had undergone maxillectomy and postoperative radiotherapy for the treatment of maxillary cancer. He also had poorly controlled diabetes mellitus and was further diagnosed with ongoing osteoradionecrosis of the remaining maxilla. In the patient with naso-oropharyngeal stenosis who underwent revision surgery, initial reconstruction with the nasoseptal flap failed. We believe that the decreased circulation and eventual necrosis of the flap was related to the previous septoplasty. Although the main pedicle which is the posterior septal artery was preserved, the septal mucosa was very thin, with frequent areas of void septal bone. Therefore, in the final revision surgery, the lateral nasal wall flap was chosen instead of the contralateral nasoseptal flap [20].

Although we have confirmed its usefulness, the use of nasal pedicled surgical flaps has limitations related to the size and location of the oropharyngeal defect. Nasoseptal flaps incorporating the membranous septum anteriorly and the nasal floor inferriorly can provide maximal reach and size [21]. The inferior turbinate, middle turbinate and whole lateral nasal wall flap can be used when the septum is not available. The choice will depend on the size and location of the defect. Therefore, a discreet preoperative evaluation should be performed before surgery. In addition, there were no additional nasal morbidities such as septal perforation. However, the limited number of cases precluded further elucidation of factors related to success, such as size, location, and superiority according to the choice of nasal flap and interposition graft. Further studies with larger sample sizes are warranted.

Conclusion
Pedicled nasal surgical flaps can be used to increase to successfully reconstruct selective naso-oropharyngeal lesions.

Author Contributions
Conceptualization: TBW, JKK; Data curation: TBW, JKK; Formal analysis: JKK; Methodology: TBW, JKK, WJJ and SWC; Writing-original draft: JKK; Writing-review & editing: TBW, JKK.

References
